Evolution of STP
Different Versions of STP
This topic details the many different versions of STP and other options for preventing loops in your network.
Up to now, we have used the term Spanning Tree Protocol and the acronym STP, which can be misleading. Many professionals generically use these to refer to the various implementations of spanning tree, such as Rapid Spanning Tree Protocol (RSTP) and Multiple Spanning Tree Protocol (MSTP). In order to communicate spanning tree concepts correctly, it is important to refer to the implementation or standard of spanning tree in context.
The latest standard for spanning tree is contained in IEEE-802-1D-2004, the IEEE standard for Local and metropolitan area networks:Media Access Control (MAC) Bridges. This version of the standard states that switches and bridges that comply with the standard will use Rapid Spanning Tree Protocol (RSTP) instead of the older STP protocol specified in the original 802.1d standard. In this curriculum, when the original Spanning Tree Protocol is the context of a discussion, the phrase “original 802.1D spanning tree” is used to avoid confusion. Because the two protocols share much of the same terminology and methods for the loop-free path, the primary focus will be on the current standard and the Cisco proprietary implementations of STP and RSTP.
Several varieties of spanning tree protocols have emerged since the original IEEE 802.1D specification, as shown in the table.
STP Variety | Description |
---|---|
STP | This is the original IEEE 802.1D version (802.1D-1998 and earlier) that provides a loop-free topology in a network with redundant links. Also called Common Spanning Tree (CST), it assumes one spanning tree instance for the entire bridged network, regardless of the number of VLANs. |
PVST+ | Per-VLAN Spanning Tree (PVST+) is a Cisco enhancement of STP that provides a separate 802.1D spanning tree instance for each VLAN configured in the network. PVST+ supports PortFast, UplinkFast, BackboneFast, BPDU guard, BPDU filter, root guard, and loop guard. |
RSTP | Rapid Spanning Tree Protocol (RSTP) or IEEE 802.1w is an evolution of STP that provides faster convergence than STP. |
802.1D-2004 | This is an updated version of the STP standard, incorporating IEEE 802.1w. |
Rapid PVST+ | This is a Cisco enhancement of RSTP that uses PVST+ and provides a separate instance of 802.1w per VLAN. Each separate instance supports PortFast, BPDU guard, BPDU filter, root guard, and loop guard. |
MSTP | Multiple Spanning Tree Protocol (MSTP) is an IEEE standard inspired by the earlier Cisco proprietary Multiple Instance STP (MISTP) implementation. MSTP maps multiple VLANs into the same spanning tree instance. |
MST | Multiple Spanning Tree (MST) is the Cisco implementation of MSTP, which provides up to 16 instances of RSTP and combines many VLANs with the same physical and logical topology into a common RSTP instance. Each instance supports PortFast, BPDU guard, BPDU filter, root guard, and loop guard. |
A network professional, whose duties include switch administration, may be required to decide which type of spanning tree protocol to implement.
Cisco switches running IOS 15.0 or later, run PVST+ by default. This version incorporates many of the specifications of IEEE 802.1D-2004, such as alternate ports in place of the former non-designated ports. Switches must be explicitly configured for rapid spanning tree mode in order to run the rapid spanning tree protocol.
RSTP Concepts
RSTP (IEEE 802.1w) supersedes the original 802.1D while retaining backward compatibility. The 802.1w STP terminology remains primarily the same as the original IEEE 802.1D STP terminology. Most parameters have been left unchanged. Users that are familiar with the original STP standard can easily configure RSTP. The same spanning tree algorithm is used for both STP and RSTP to determine port roles and topology.
RSTP increases the speed of the recalculation of the spanning tree when the Layer 2 network topology changes. RSTP can achieve much faster convergence in a properly configured network, sometimes in as little as a few hundred milliseconds. If a port is configured to be an alternate port it can immediately change to a forwarding state without waiting for the network to converge.
Note: Rapid PVST+ is the Cisco implementation of RSTP on a per-VLAN basis. With Rapid PVST+ an independent instance of RSTP runs for each VLAN.
RSTP Port States and Port Roles
The port states and port roles between STP and RSTP are similar.