Module Practice and Quiz


What did I learn in this module?

Purpose of the Data Link Layer

The data link layer of the OSI model (Layer 2) prepares network data for the physical network. The data link layer is responsible for network interface card (NIC) to network interface card communications. Without the data link layer, network layer protocols such as IP, would have to make provisions for connecting to every type of media that could exist along a delivery path. The IEEE 802 LAN/MAN data link layer consists of the following two sublayers: LLC and MAC. The MAC sublayer provides data encapsulation through frame delimiting, addressing, and error detection. Router interfaces encapsulate the packet into the appropriate frame. A suitable media access control method is used to access each link. Engineering organizations that define open standards and protocols that apply to the network access layer include: IEEE, ITU, ISO, and ANSI.


The two types of topologies used in LAN and WAN networks are physical and logical. The data link layer “sees” the logical topology of a network when controlling data access to the media. The logical topology influences the type of network framing and media access control used. Three common types of physical WAN topologies are: point-to-point, hub and spoke, and mesh. Physical point-to-point topologies directly connect two end devices (nodes). Adding intermediate physical connections may not change the logical topology. In multi-access LANs, nodes are interconnected using star or extended star topologies. In this type of topology, nodes are connected to a central intermediary device. Physical LAN topologies include: star, extended star, bus, and ring. Half-duplex communications exchange data in one direction at a time. Full-duplex sends and receives data simultaneously. Two interconnected interfaces must use the same duplex mode or there will be a duplex mismatch creating inefficiency and latency on the link. Ethernet LANs and WLANs are examples of multi-access networks. A multi-access network is a network that can have multiple nodes accessing the network simultaneously. Some multi-access networks require rules to govern how devices share the physical media. There are two basic access control methods for shared media: contention-based access and controlled access. In contention-based multi-access networks, all nodes are operating in half-duplex. There is a process if more than one device transmits at the same time. Examples of contention-based access methods include: CSMA/CD for bus-topology Ethernet LANs and CSMA/CA for WLANs.

Data Link Frame

The data link layer prepares the encapsulated data (usually an IPv4 or IPv6 packet) for transport across the local media by encapsulating it with a header and a trailer to create a frame. The data link protocol is responsible for NIC-to-NIC communications within the same network. There are many different data link layer protocols that describe data link layer frames, each frame type has three basic parts: header, data, and trailer. Unlike other encapsulation protocols, the data link layer appends information in the trailer. There is no one frame structure that meets the needs of all data transportation across all types of media. Depending on the environment, the amount of control information needed in the frame varies to match the access control requirements of the media and logical topology. Frame fields include: frame start and stop indicator flags, addressing, type, control, data, and error detection. The data link layer provides addressing used to transport a frame across shared local media. Device addresses at this layer are physical addresses. Data link layer addressing is contained within the frame header and specifies the frame destination node on the local network. The data link layer address is only used for local delivery. In a TCP/IP network, all OSI Layer 2 protocols work with IP at OSI Layer 3. However, the Layer 2 protocol used depends on the logical topology and the physical media. Each protocol performs media access control for specified Layer 2 logical topologies. The Layer 2 protocol that is used for a particular network topology is determined by the technology used to implement that topology. Data link layer protocols include: Ethernet, 802.11 Wireless, PPP, HDLC, and Frame Relay.

6.4.2 Module Quiz – Data Link Layer