QoS Implementation Techniques

Avoiding Packet Loss

Now that you have learned about traffic characteristics, queuing algorithms, and QoS models, it is time to learn about QoS implementation techniques.

Let’s start with packet loss. Packet loss is usually the result of congestion on an interface. Most applications that use TCP experience slowdown because TCP automatically adjusts to network congestion. Dropped TCP segments cause TCP sessions to reduce their window sizes. Some applications do not use TCP and cannot handle drops (fragile flows).

The following approaches can prevent drops in sensitive applications:

  • Increase link capacity to ease or prevent congestion.
  • Guarantee enough bandwidth and increase buffer space to accommodate bursts of traffic from fragile flows. WFQ, CBWFQ, and LLQ can guarantee bandwidth and provide prioritized forwarding to drop-sensitive applications.
  • Drop lower-priority packets before congestion occurs. Cisco IOS QoS provides queuing mechanisms, such as weighted random early detection (WRED), that start dropping lower-priority packets before congestion occurs.
9.5.3

QoS Tools

There are three categories of QoS tools, as described in the table:

  • Classification and marking tools
  • Congestion avoidance tools
  • Congestion management tools

Tools for Implementing QoS

 
QoS Tools Description
Classification and marking tools
  • Sessions, or flows, are analyzed to determine what traffic class they belong to.
  • When the traffic class is determined, the packets are marked.
Congestion avoidance tools
  • Traffic classes are allotted portions of network resources, as defined by the QoS policy.
  • The QoS policy also identifies how some traffic may be selectively dropped, delayed, or re-marked to avoid congestion.
  • The primary congestion avoidance tool is WRED and is used to regulate TCP data traffic in a bandwidth-efficient manner before tail drops caused by queue overflows occur.
Congestion management tools
  • When traffic exceeds available network resources, traffic is queued to await availability of resources.
  • Common Cisco IOS-based congestion management tools include CBWFQ and LLQ algorithms.

Refer to the figure to help understand the sequence of how these tools are used when QoS is applied to packet flows.

 

QoS Sequence

As shown in the figure, ingress packets (gray squares) are classified and their respective IP header is marked (colored squares). To avoid congestion, packets are then allocated resources based on defined policies. Packets are then queued and forwarded out the egress interface based on their defined QoS shaping and policing policy.

Note: Classification and marking can be done on ingress or egress, whereas other QoS actions such queuing and shaping are usually done on egress.

Classification and Marking

Before a packet can have a QoS policy applied to it, the packet has to be classified. Classification and marking allows us to identify or “mark” types of packets. Classification determines the class of traffic to which packets or frames belong. Only after traffic is marked can policies be applied to it.

How a packet is classified depends on the QoS implementation. Methods of classifying traffic flows at Layer 2 and 3 include using interfaces, ACLs, and class maps. Traffic can also be classified at Layers 4 to 7 using Network Based Application Recognition (NBAR).

Note: NBAR is a classification and protocol discovery feature of Cisco IOS software that works with QoS features. NBAR is out of scope for this course.

Marking means that we are adding a value to the packet header. Devices receiving the packet look at the marked field to see if it matches a defined policy. Marking should be done as close to the source device as possible. This establishes the trust boundary.

How traffic is marked usually depends on the technology. The table in the figure describes some the marking fields used in various technologies. The decision of whether to mark traffic at Layers 2 or 3 (or both) is not trivial and should be made after consideration of the following points:

  • Layer 2 marking of frames can be performed for non-IP traffic.
  • Layer 2 marking of frames is the only QoS option available for switches that are not “IP aware”.
  • Layer 3 marking will carry the QoS information end-to-end.

Traffic Marking for QoS

 
QoS Tools Layer Marking Field Width in Bits
Ethernet (802.1Q, 802.1p) 2 Class of Service (CoS) 3
802.11 (Wi-Fi) 2 Wi-Fi Traffic Identifier (TID) 3
MPLS 2 Experimental (EXP) 3
IPv4 and IPv6 3 IP Precedence (IPP) 3
IPv4 and IPv6 3 Differentiated Services Code Point (DSCP) 6

Marking at Layer 2

802.1Q is the IEEE standard that supports VLAN tagging at Layer 2 on Ethernet networks. When 802.1Q is implemented, two fields are added to the Ethernet Frame. As shown in the figure, these two fields are inserted into the Ethernet frame following the source MAC address field.

 

Ethernet Class of Service (CoS) Values

The 802.1Q standard also includes the QoS prioritization scheme known as IEEE 802.1p. The 802.1p standard uses the first three bits in the Tag Control Information (TCI) field. Known as the Priority (PRI) field, this 3-bit field identifies the Class of Service (CoS) markings. Three bits means that a Layer 2 Ethernet frame can be marked with one of eight levels of priority (values 0-7) as displayed in the figure.

Ethernet Class of Service (CoS) Values

 
CoS Value CoS Binary Value Description
0 000 Best-Effort Data
1 001 Medium-Priority Data
2 010 High-Priority Data
3 011 Call Signaling
4 100 Videoconferencing
5 101 Voice bearer (voice traffic)
6 110 Reserved
7 111 Reserved

Marking at Layer 3

IPv4 and IPv6 specify an 8-bit field in their packet headers to mark packets. As shown in the figure, both IPv4 and IPv6 support an 8-bit field for marking: the Type of Service (ToS) field for IPv4 and the Traffic Class field for IPv6.

 

IPv4 and IPv6 Packet Headers

Type of Service and Traffic Class Field

The Type of Service (IPv4) and Traffic Class (IPv6) carry the packet marking as assigned by the QoS classification tools. The field is then referred to by receiving devices which forward the packets based on the appropriate assigned QoS policy.

The figure displays the contents of the 8-bit field. In RFC 791, the original IP standard specified the IP Precedence (IPP) field to be used for QoS markings. However, in practice, these three bits did not provide enough granularity to implement QoS.

RFC 2474 supersedes RFC 791 and redefines the ToS field by renaming and extending the IPP field. The new field, as shown in the figure, has 6-bits allocated for QoS. Called the Differentiated Services Code Point (DSCP) field, these six bits offer a maximum of 64 possible classes of service. The remaining two IP Explicit Congestion Notification (ECN) bits can be used by ECN-aware routers to mark packets instead of dropping them. The ECN marking informs downstream routers that there is congestion in the packet flow.

DSCP Values

The 64 DSCP values are organized into three categories:

  • Best-Effort (BE) – This is the default for all IP packets. The DSCP value is 0. The per-hop behavior is normal routing. When a router experiences congestion, these packets will be dropped. No QoS plan is implemented.
  • Expedited Forwarding (EF) – RFC 3246 defines EF as the DSCP decimal value 46 (binary 101110). The first 3 bits (101) map directly to the Layer 2 CoS value 5 used for voice traffic. At Layer 3, Cisco recommends that EF only be used to mark voice packets.
  • Assured Forwarding (AF) – RFC 2597 defines AF to use the 5 most significant DSCP bits to indicate queues and drop preference. The definition of AF is illustrated in the figure.

Assured Forwarding Values

 

Module Practice and Quiz